
t3rn - Guardian
Smart Contract Security

Assessment

Prepared by: Halborn

Date of Engagement: December 11th, 2023 - December 22nd, 2023

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 4

CONTACTS 4

1 EXECUTIVE OVERVIEW 5

1.1 INTRODUCTION 6

1.2 ASSESSMENT SUMMARY 6

1.3 TEST APPROACH & METHODOLOGY 7

2 RISK METHODOLOGY 9

2.1 EXPLOITABILITY 10

2.2 IMPACT 11

2.3 SEVERITY COEFFICIENT 13

2.4 SCOPE 15

3 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 16

4 FINDINGS & TECH DETAILS 17

4.1 (HAL-01) REENTRANCY RISK IN executeLocalOrder WITH ERC677/ERC223

TOKENS - CRITICAL(10) 19

Description 19

BVSS 19

Recommendation 19

Remediation Plan 20

4.2 (HAL-02) DELEGATECALL TO UNTRUSTED CONTRACT IN ESCROWGMP - CRIT-

ICAL(10) 21

Description 21

BVSS 21

Recommendation 21

Remediation Plan 22

1

4.3 (HAL-03) BYPASSING CLAIM REFUND WAIT PERIOD - CRITICAL(10) 23

Description 23

BVSS 23

Recommendation 23

Remediation Plan 24

4.4 (HAL-04) ASSET VALIDATION MISSING - HIGH(7.5) 25

Description 25

BVSS 25

Recommendation 25

Remediation Plan 26

4.5 (HAL-05) POTENTIAL ERC20 TOKEN EXPLOIT - HIGH(7.5) 27

Description 27

BVSS 27

Recommendation 28

Remediation Plan 28

4.6 (HAL-06) QUORUM CALCULATION ISSUE IN CONSTRUCTOR WITH SINGLE

COMMITTEE MEMBER - HIGH(7.0) 29

Description 29

BVSS 29

Recommendation 29

Remediation Plan 30

4.7 (HAL-07) MISSING VALIDITY CHECK - LOW(2.1) 31

Description 31

BVSS 31

Recommendation 31

Remediation Plan 32

2

4.8 (HAL-08) REDUNDANT BALANCE CHECK - LOW(2.5) 33

Description 33

BVSS 33

Recommendation 33

Remediation Plan 34

4.9 (HAL-09) PERMANENT COMMITTEE HASH LOCK - INFORMATIONAL(1.3) 35

Description 35

BVSS 35

Recommendation 35

Remediation Plan 36

5 REVIEW NOTES 37

5.1 TRN / t3USD / t3SOL / t3DOT / t3BTC 38

5.2 EscrowGMP 38

5.3 LocalExchange 39

5.4 RemoteOrder 39

5.5 AttestationsVerifierProofs 40

6 AUTOMATED TESTING 40

6.1 STATIC ANALYSIS REPORT 42

Description 42

Results 42

Results summary 55

3

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE

0.1 Document Creation 12/21/2023

0.2 Draft Review 12/22/2023

1.0 Remediation Plan 02/12/2024

1.1 Remediation Plan Review 03/07/2024

1.2 Remediation Plan Review 03/07/2024

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Ferran Celades Halborn Ferran.Celades@halborn.com

4

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Ferran.Celades@halborn.com

5

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

t3rn engaged Halborn to conduct a security assessment on their smart

contracts beginning on December 11th, 2023 and ending on December 22nd,

2023 . The security assessment was scoped to the smart contracts provided

in the t3rn/guardian GitHub repository. Commit hashes and further details

can be found in the Scope section of this report.

1.2 ASSESSMENT SUMMARY

In summary, Halborn identified some security risks that were successfully

addressed by the t3rn team. Here are the key findings and recommendations:

• Issue with Quorum Calculation in Constructor: A flaw was identified

in the quorum calculation for single committee members, resulting in

a quorum value of zero. It is recommended to implement a conditional

check to ensure correct quorum setting.

• Permanent Committee Hash Equality in receiveAttestationBatch:

Discovered a logic issue that causes currentCommitteeHash and

nextCommitteeHash to become permanently equal, thereby locking the

committee update mechanism. A two-step committee update process

with proper validation is suggested.

• Redundant Balance Check in LocalExchange: Noted a redundant balance

check in the LocalExchange contract. Removing the user.balance >=

amount check for native token transactions is recommended to align

with Ethereum’s balance deduction mechanism.

• Asset Validation Missing in RemoteOrder: Detected the absence of

asset validation in the orderMemoryData function of the RemoteOrder

contract. Advised including a check to validate rewardAsset against

asset, ensuring consistency across different functions.

• Mismatched Functionality in claimRefund and claimPayout: Uncov-

ered an inconsistency between claimRefund and claimPayout due to

6

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/t3rn/guardian

the withdrawFromVault function. Modifying withdrawFromVault to an

internal function with additional parameters to distinctly handle

refunds and payouts is recommended.

• Vulnerability in Delegated Calls in EscrowGMP: Found a critical

issue with the use of delegatecall in the EscrowGMP contract. Pro-

posed replacing delegatecall with call and implementing a whitelist

of trusted contracts for enhanced security.

• Missing Validity Check in storeEscrowCallOrder: Identified a missing

check for existing EscrowCall data in storeEscrowCallOrder, posing

a risk of data overwriting. Adding a validity check within the

function is recommended.

• Potential ERC20 Token Exploit in LocalExchange.localOrder: Noted

a potential vulnerability in handling ERC20 token rewards in

LocalExchange.localOrder. Transferring reward tokens at the order

creation stage to mitigate this risk is suggested.

Each of these findings has been thoroughly investigated, with specific

recommendations provided to address the identified issues. Implement-

ing these changes will significantly enhance the overall security and

reliability of the smart contracts in question.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this assessment. While manual testing is recommended to

uncover flaws in logic, process, and implementation; automated testing

techniques help enhance coverage of the code and can quickly identify

items that do not follow the security best practices. The following

phases and associated tools were used during the assessment:

• Research into architecture and purpose

• Smart contract manual code review and walkthrough

7

EX
EC

UT
IV

E
OV

ER
VI

EW

• Graphing out functionality and contract logic/connectivity/functions

(solgraph)

• Manual assessment of use and safety for the critical Solidity vari-

ables and functions in scope to identify any arithmetic related

vulnerability classes

• Manual testing by custom scripts

• Scanning of solidity files for vulnerabilities, security hot-spots

or bugs. (MythX)

• Static Analysis of security for scoped contract, and imported func-

tions. (Slither)

• Testnet deployment (Brownie, Remix IDE, Foundry)

8

EX
EC

UT
IV

E
OV

ER
VI

EW

2. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two

sets of Metrics and a Severity Coefficient. This system is inspired by

the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability

captures the ease and technical means by which vulnerabilities can be

exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of

the ranking with two factors: Reversibility and Scope. These capture the

impact of the vulnerability on the environment as well as the number of

users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and

10 corresponding to the highest security risk. This provides an objective

and accurate rating of the severity of security vulnerabilities in smart

contracts.

The system is designed to assist in identifying and prioritizing vul-

nerabilities based on their level of risk to address the most critical

issues in a timely manner.

9

EX
EC

UT
IV

E
OV

ER
VI

EW

2.1 EXPLOITABILITY

Attack Origin (AO):

Captures whether the attack requires compromising a specific account.

Attack Cost (AC):

Captures the cost of exploiting the vulnerability incurred by the attacker

relative to sending a single transaction on the relevant blockchain.

Includes but is not limited to financial and computational cost.

Attack Complexity (AX):

Describes the conditions beyond the attacker’s control that must exist in

order to exploit the vulnerability. Includes but is not limited to macro

situation, available third-party liquidity and regulatory challenges.

Metrics:

Exploitability Metric

(mE)
Metric Value Numerical Value

Attack Origin (AO)
Arbitrary (AO:A) 1

Specific (AO:S) 0.2

Attack Cost (AC)

Low (AC:L) 1

Medium (AC:M) 0.67

High (AC:H) 0.33

Attack Complexity (AX)

Low (AX:L) 1

Medium (AX:M) 0.67

High (AX:H) 0.33

Exploitability E is calculated using the following formula:

E “
ź

me

10

EX
EC

UT
IV

E
OV

ER
VI

EW

2.2 IMPACT

Confidentiality (C):

Measures the impact to the confidentiality of the information resources

managed by the contract due to a successfully exploited vulnerability.

Confidentiality refers to limiting access to authorized users only.

Integrity (I):

Measures the impact to integrity of a successfully exploited vulnerabil-

ity. Integrity refers to the trustworthiness and veracity of data stored

and/or processed on-chain. Integrity impact directly affecting Deposit

or Yield records is excluded.

Availability (A):

Measures the impact to the availability of the impacted component re-

sulting from a successfully exploited vulnerability. This metric refers

to smart contract features and functionality, not state. Availability

impact directly affecting Deposit or Yield is excluded.

Deposit (D):

Measures the impact to the deposits made to the contract by either users

or owners.

Yield (Y):

Measures the impact to the yield generated by the contract for either

users or owners.

11

EX
EC

UT
IV

E
OV

ER
VI

EW

Metrics:

Impact Metric

(mI)
Metric Value Numerical Value

Confidentiality (C)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Integrity (I)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Availability (A)

None (A:N) 0

Low (A:L) 0.25

Medium (A:M) 0.5

High (A:H) 0.75

Critical 1

Deposit (D)

None (D:N) 0

Low (D:L) 0.25

Medium (D:M) 0.5

High (D:H) 0.75

Critical (D:C) 1

Yield (Y)

None (Y:N) 0

Low (Y:L) 0.25

Medium: (Y:M) 0.5

High: (Y:H) 0.75

Critical (Y:H) 1

Impact I is calculated using the following formula:

I “ maxpmIq `

ř

mI ´ maxpmIq

4

12

EX
EC

UT
IV

E
OV

ER
VI

EW

2.3 SEVERITY COEFFICIENT

Reversibility (R):

Describes the share of the exploited vulnerability effects that can be

reversed. For upgradeable contracts, assume the contract private key is

available.

Scope (S):

Captures whether a vulnerability in one vulnerable contract impacts re-

sources in other contracts.

Coefficient

(C)
Coefficient Value Numerical Value

Reversibility (r)

None (R:N) 1

Partial (R:P) 0.5

Full (R:F) 0.25

Scope (s)
Changed (S:C) 1.25

Unchanged (S:U) 1

Severity Coefficient C is obtained by the following product:

C “ rs

13

EX
EC

UT
IV

E
OV

ER
VI

EW

The Vulnerability Severity Score S is obtained by:

S “ minp10, EIC ˚ 10q

The score is rounded up to 1 decimal places.

Severity Score Value Range

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

14

EX
EC

UT
IV

E
OV

ER
VI

EW

2.4 SCOPE

The security assessment was scoped to the following smart contracts:

• attestationsVerifierProofs.sol

• TRNToken.sol

• localExchange.sol

• t3USD.sol

• t3DotToken.sol

• ERC20Mock.sol

• escrowGMP.sol

• t3SOLToken.sol

• remoteOrder.sol

• t3BTCToken.sol

COMMIT ID: bd784cde3b37773b062288925b2015a0c8a9806b

OUT-OF-SCOPE:

• Third-party libraries and dependencies.

• Economic attacks.

REMEDIATION COMMIT IDs:

• 8609f3d41577f694d6a8b266e6e7f351c23c8691

• 69eb56161b5e8f2005da9831db743bb9eab94116

• 27b50011bdd991c913b3b44b40e2dee2fea54061

• cb47d8f4c7ed4027a101ceb79c4f9f7effe60daa

• e89b63190c6c6a842d10f9ddc6a5ac34f1e782ac

• dbf474829647e9ee14be13453314aa63b1bd7555

• 54543ff374738c3448792415a77d8ba60789c382

• 077d90b34310d79f54d7af9e7f7bfb1d1f463798

• d4d47859f34a1752e4a39e7f79bdc29ba6ec5f05

OUT-OF-SCOPE IN REMEDIATION PLAN:

• New features after/within the remediation.

15

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/t3rn/guardian/commit/bd784cde3b37773b062288925b2015a0c8a9806b
https://github.com/t3rn/guardian/pull/178/commits/8609f3d41577f694d6a8b266e6e7f351c23c8691
https://github.com/t3rn/guardian/commit/69eb56161b5e8f2005da9831db743bb9eab94116
https://github.com/t3rn/guardian/pull/178/commits/27b50011bdd991c913b3b44b40e2dee2fea54061
https://github.com/t3rn/guardian/pull/178/commits/cb47d8f4c7ed4027a101ceb79c4f9f7effe60daa
https://github.com/t3rn/guardian/pull/178/commits/e89b63190c6c6a842d10f9ddc6a5ac34f1e782ac
https://github.com/t3rn/guardian/pull/178/commits/dbf474829647e9ee14be13453314aa63b1bd7555
https://github.com/t3rn/guardian/pull/178/commits/54543ff374738c3448792415a77d8ba60789c382
https://github.com/t3rn/guardian/pull/178/commits/077d90b34310d79f54d7af9e7f7bfb1d1f463798
https://github.com/t3rn/guardian/pull/178/commits/d4d47859f34a1752e4a39e7f79bdc29ba6ec5f05

3. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

3 3 0 2 1

16

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01) REENTRANCY RISK IN
executeLocalOrder WITH
ERC677/ERC223 TOKENS

Critical (10) SOLVED - 01/09/2024

(HAL-02) DELEGATECALL TO UNTRUSTED
CONTRACT IN ESCROWGMP

Critical (10) SOLVED - 12/13/2023

(HAL-03) BYPASSING CLAIM REFUND
WAIT PERIOD

Critical (10) SOLVED - 01/09/2024

(HAL-04) ASSET VALIDATION MISSING High (7.5) SOLVED - 01/31/2024

(HAL-05) POTENTIAL ERC20 TOKEN
EXPLOIT

High (7.5) SOLVED - 01/31/2024

(HAL-06) QUORUM CALCULATION ISSUE
IN CONSTRUCTOR WITH SINGLE

COMMITTEE MEMBER
High (7.0) SOLVED - 01/09/2024

(HAL-07) MISSING VALIDITY CHECK Low (2.1) SOLVED - 01/09/2024

(HAL-08) REDUNDANT BALANCE CHECK Low (2.5) SOLVED - 01/09/2024

(HAL-09) PERMANENT COMMITTEE HASH
LOCK

Informational
(1.3)

SOLVED - 01/09/2024

17

EX
EC

UT
IV

E
OV

ER
VI

EW

18

FINDINGS & TECH
DETAILS

4.1 (HAL-01) REENTRANCY RISK IN
executeLocalOrder WITH
ERC677/ERC223 TOKENS - CRITICAL(10)

Description:

In the executeLocalOrder function of the LocalExchange contract, there

exists a potential reentrancy risk when dealing with ERC677, ERC223, or

similar tokens. These token standards implement a callback mechanism that

is triggered when tokens are transferred to a contract. If the recipient

of a transfer in executeLocalOrder is a contract, this callback could be

exploited to re-enter the executeLocalOrder function.

This reentrancy risk is particularly concerning because if the allowance

for the token is greater than the amount required for a single order, an

attacker could potentially trigger the same order multiple times. The

current implementation sets localOrders[local_order_id] = false after the

transfer, which leaves a window for reentrancy attacks.

BVSS:

AO:A/AC:L/AX:M/C:N/I:C/A:N/D:C/Y:C/R:N/S:U (10)

Recommendation:

To mitigate this reentrancy risk, it is recommended to employ the cause-

effect pattern by setting localOrders[local_order_id] = false immediately

after the order existence check and before any external calls or token

transfers. This change ensures that even if a reentrancy occurs, the

state change (order execution marking) has already been done, preventing

repeated execution of the same order.

The revised sequence in executeLocalOrder should be:

1. Check if the order exists.

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

2. Mark the order as executed (localOrders[local_order_id] = false).

3. Proceed with the token transfer and other function logic.

Implementing this change will protect against reentrancy attacks in sce-

narios involving tokens with callback mechanisms, thereby enhancing the

security of the executeLocalOrder function within the LocalExchange con-

tract.

Remediation Plan:

SOLVED: The issue was solved as suggested on https://github.com/t3rn/

guardian/pull/178/commits/8609f3d41577f694d6a8b266e6e7f351c23c8691

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/t3rn/guardian/pull/178/commits/8609f3d41577f694d6a8b266e6e7f351c23c8691
https://github.com/t3rn/guardian/pull/178/commits/8609f3d41577f694d6a8b266e6e7f351c23c8691

4.2 (HAL-02) DELEGATECALL TO
UNTRUSTED CONTRACT IN ESCROWGMP -
CRITICAL(10)

Description:

The EscrowGMP smart contract contains a critical vulnerability in its

implementation of commitEscrowCall and revertEscrowCall functions. These

functions utilize delegatecall to execute code from an untrusted external

contract within the context of the EscrowGMP contract. This is dangerous

as it allows the external contract to execute any code with the privileges

of EscrowGMP, including modifying its state and accessing its funds.

The current implementation attempts to mitigate risks by checking for

self-destruct calls through isSelfDestructCall. However, this method

is flawed. It checks for a specific method signature, assuming that a

self-destruct operation would always be invoked through a function with

a recognizable signature. In reality, the SELFDESTRUCT opcode can be

included in any function, regardless of its name or signature. Thus,

an attacker can include the SELFDESTRUCT opcode in a function with a

different name and bypass the check.

BVSS:

AO:A/AC:L/AX:M/C:N/I:C/A:C/D:M/Y:M/R:N/S:U (10)

Recommendation:

To mitigate this vulnerability, it is recommended to replace delegatecall

with call in both the commitEscrowCall and revertEscrowCall functions.

This change will ensure that the executed code operates in the context

of the calling contract rather than EscrowGMP. Thus, even if the called

contract contains malicious code, it will not have direct access to modify

the state or access the funds of EscrowGMP.

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Additionally, consider implementing a whitelist of trusted contracts or

a mechanism to verify the trustworthiness of the contract being called.

This approach can add an extra layer of security by ensuring that only

vetted and safe contracts can interact with EscrowGMP.

It’s important to note that the decision between using call and main-

taining delegatecall should be aligned with the intended design and

functionality of the contract. If the design requires preserving the

context of EscrowGMP, then rigorous checks and a system to ensure the

safety of the external code must be implemented.

Remediation Plan:

SOLVED: The issue was solved as suggested on https://github.com/t3rn/

guardian/commit/69eb56161b5e8f2005da9831db743bb9eab94116

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/t3rn/guardian/commit/69eb56161b5e8f2005da9831db743bb9eab94116
https://github.com/t3rn/guardian/commit/69eb56161b5e8f2005da9831db743bb9eab94116

4.3 (HAL-03) BYPASSING CLAIM REFUND
WAIT PERIOD - CRITICAL(10)

Description:

In the RemoteOrder contract, the functions claimRefund and claimPayout

demonstrate a critical inconsistency in their functionality. This issue

arises due to the withdrawFromVault function, which both claimRefund and

claimPayout call. The withdrawFromVault function utilizes an || (logical

OR) operator in its condition checks, which does not differentiate between

a refund or a payout. This design flaw allows for a scenario where an ID

marked for refund could still process a payout and vice versa.

Furthermore, withdrawFromVault is publicly accessible, allowing direct

calls that bypass the intended logic of claimRefund and claimPayout. This

opens a vulnerability where withdrawals can be made without adhering to

the specific conditions meant for refunds or payouts.

BVSS:

AO:A/AC:L/AX:L/C:N/I:C/A:N/D:N/Y:L/R:N/S:C (10)

Recommendation:

To address this vulnerability, several modifications are recommended:

1. Change withdrawFromVault to Internal: Restricting the visibil-

ity of withdrawFromVault to internal will prevent direct public

calls, ensuring that withdrawals can only occur through the in-

tended claimRefund or claimPayout functions.

2. Differentiate Refund and Payout Logic: Modify withdrawFromVault to

accept an additional parameter or flag that indicates whether the

operation is a refund or a payout. This modification allows for

distinct handling of each case.

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3. Separate Hash Checks: Implement separate hash checks within

withdrawFromVault for refunds and payouts, based on the additional

parameter/flag. This approach will ensure that an ID marked for

refund cannot be used for a payout and vice versa.

4. Adjust claimRefund and claimPayout Accordingly: Modify claimRefund

and claimPayout to pass the appropriate flag or parameter to

withdrawFromVault, aligning with their respective intended func-

tionalities.

These changes will enforce a clear distinction between refunds and pay-

outs, ensuring that each process adheres strictly to its defined condi-

tions and enhancing the overall security and integrity of the RemoteOrder

contract’s operations.

Remediation Plan:

SOLVED: The issue was solved by splitting the functionality into two dif-

ferent functions on https://github.com/t3rn/guardian/pull/178/commits/

27b50011bdd991c913b3b44b40e2dee2fea54061

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/t3rn/guardian/pull/178/commits/27b50011bdd991c913b3b44b40e2dee2fea54061
https://github.com/t3rn/guardian/pull/178/commits/27b50011bdd991c913b3b44b40e2dee2fea54061

4.4 (HAL-04) ASSET VALIDATION
MISSING - HIGH (7.5)

Description:

The RemoteOrder contract has a vulnerability in its orderMemoryData func-

tion, which is publicly accessible and does not validate the rewardAsset

against the asset. While the remoteBridgeAsset function, which internally

calls orderMemoryData, correctly checks supportedBridgeAssetsHereToThere

to validate bridge assets, orderMemoryData lacks this validation. This

discrepancy can lead to potential issues when orderMemoryData is called

directly, bypassing the checks implemented in remoteBridgeAsset.

In the remoteBridgeAsset function, the asset and rewardAsset are intended

to be equivalent, as indicated by the abi.encode call, which uses the same

assetHere for both asset and rewardAsset. However, when orderMemoryData

is called directly, there is no such guarantee, potentially leading to

inconsistencies or unintended behavior.

BVSS:

AO:A/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:N/S:U (7.5)

Recommendation:

To mitigate this vulnerability, the orderMemoryData function should be

modified to include validation for the rewardAsset similar to the checks

done in remoteBridgeAsset. This can be achieved by incorporating the

supportedBridgeAssetsHereToThere mapping within orderMemoryData to ensure

that the rewardAsset matches the expected asset.

The proposed changes include:

1. Asset Validation in orderMemoryData: Add a check in orderMemoryData

to validate that the rewardAsset is a supported bridge as-

set corresponding to the given asset. This can be done

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

by comparing the rewardAsset with the value obtained from

supportedBridgeAssetsHereToThere for the specified asset.

2. Restrict Direct Access if Necessary: If orderMemoryData is not

intended for public use, consider changing its visibility to

internal to prevent direct calls that bypass the validation logic

in remoteBridgeAsset.

By implementing these changes, the contract will ensure consistency in

asset handling across different functions, enhancing the security and

reliability of the RemoteOrder contract’s operations.

Remediation Plan:

SOLVED: The issue was solved on https://github.com/t3rn/guardian/pull/

178/commits/cb47d8f4c7ed4027a101ceb79c4f9f7effe60daa

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/t3rn/guardian/pull/178/commits/cb47d8f4c7ed4027a101ceb79c4f9f7effe60daa
https://github.com/t3rn/guardian/pull/178/commits/cb47d8f4c7ed4027a101ceb79c4f9f7effe60daa

4.5 (HAL-05) POTENTIAL ERC20 TOKEN
EXPLOIT - HIGH (7.5)

Description:

The LocalExchange contract’s localOrder function presents a potential

vulnerability concerning ERC20 token rewards. The function does not

transfer the ERC20 rewardToken at the time of order creation, relying

instead on the allowance mechanism. This design choice can lead to an

exploit scenario, particularly when a user removes their allowance for a

token after placing an order but before the order is executed. The steps

for this exploit scenario are as follows:

1. Order Placement: A user places an order using localOrder, speci-

fying an ERC20 rewardToken and setting a sufficient allowance for

LocalExchange to transfer the reward amount.

2. Allowance Removal: The user then removes the allowance for the

rewardToken after placing the order.

3. New Order Placement: The user places a new order with the same

rewardToken without cancelling the previous order.

4. Execution by Attacker: An attacker tracks non-cancelled orders with

enough initial allowance and triggers the execution of these orders.

5. Unintended Execution: The initial user might believe that by remov-

ing the allowance, they have effectively cancelled their previous

orders. However, due to the initial sufficient allowance, the con-

tract will still execute these orders.

This scenario creates a risk where the user’s ERC20 tokens could be

unexpectedly transferred as rewards for old orders they assumed were

cancelled.

BVSS:

AO:A/AC:L/AX:L/C:N/I:M/A:N/D:M/Y:M/R:N/S:U (7.5)

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

To mitigate this vulnerability, it is recommended to modify the localOrder

function to transfer the ERC20 rewardToken at the time of order creation,

similar to the handling of native tokens. This approach ensures that

the reward tokens are securely held within the LocalExchange contract

until the order is executed or refunded. Consequently, the claimRefund

function should also be adjusted to return these tokens to the user if

the order is not executed within the specified timeout period.

The proposed changes include:

1. Transfer Reward Tokens on Order Creation: Modify localOrder to

transfer the specified rewardToken amount from the user to the

LocalExchange contract.

2. Refund Tokens on Claim: Adjust claimRefund to transfer back the

rewardToken amount to the user if the order times out without being

executed.

These modifications will prevent users from unintentionally executing

old orders due to allowance manipulations and ensure a more secure and

predictable order management process within the LocalExchange contract.

Remediation Plan:

SOLVED: The issue was solved on https://github.com/t3rn/guardian/pull/

178/commits/e89b63190c6c6a842d10f9ddc6a5ac34f1e782ac

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/t3rn/guardian/pull/178/commits/e89b63190c6c6a842d10f9ddc6a5ac34f1e782ac
https://github.com/t3rn/guardian/pull/178/commits/e89b63190c6c6a842d10f9ddc6a5ac34f1e782ac

4.6 (HAL-06) QUORUM CALCULATION
ISSUE IN CONSTRUCTOR WITH SINGLE
COMMITTEE MEMBER - HIGH (7.0)

Description:

The issue arises in the constructor of a contract (not specified but

inferred from the context), where a quorum is calculated as 2/3 of

the initialCommittee.length. When the initialCommittee contains only one

member, this calculation results in a quorum of 0. This creates a signif-

icant vulnerability in scenarios requiring committee member attestations,

as no valid signatures would be needed to meet the quorum requirements.

This same issue arises in the updateCommitteeSize function.

Despite this, any proofs relying on the quorum would still fail, as the

expected number of signatures would not be met. This discrepancy between

the quorum calculation and the actual proof validation logic can lead to

unexpected behavior and potential security risks.

BVSS:

AO:A/AC:L/AX:L/C:N/I:C/A:M/D:N/Y:N/R:P/S:C (7.0)

Recommendation:

To mitigate this vulnerability, the constructor logic and

updateCommitteeSize should be modified to handle edge cases where the

initialCommittee has a minimal number of members. Specifically, for a

committee of one member, the quorum should be set to 1 instead of 0. The

constructor logic could be updated with a conditional check to handle

this case appropriately.

The revised constructor could include the following logic:

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 1

1 if (initialCommittee.length == 1) {

2 quorum = 1;

3 } else {

4 quorum = initialCommittee.length * 2 / 3;

5 }

This change ensures that the quorum calculation aligns with the intended

functionality of requiring a majority of the committee members’ attes-

tations for validation. It prevents the scenario where no signatures

are required for a quorum, thereby maintaining the integrity of the

attestation process.

Remediation Plan:

SOLVED: The issue was solved as suggested on https://github.com/t3rn/

guardian/pull/178/commits/dbf474829647e9ee14be13453314aa63b1bd7555

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/t3rn/guardian/pull/178/commits/dbf474829647e9ee14be13453314aa63b1bd7555
https://github.com/t3rn/guardian/pull/178/commits/dbf474829647e9ee14be13453314aa63b1bd7555

4.7 (HAL-07) MISSING VALIDITY
CHECK - LOW (2.1)

Description:

The storeEscrowCallOrder function in the EscrowGMP contract lacks a crit-

ical check to verify if an EscrowCall with the given id already exists.

This function is responsible for storing EscrowCall data associated with

a unique identifier (id). Without a check to determine if the id is

already in use, there is a risk that existing EscrowCall data could be

overwritten. This could lead to potential data integrity issues, where

a malicious or erroneous call could replace valid EscrowCall data.

The current implementation does not provide clarity on who is responsible

for calling storeEscrowCallOrder, and without context, it’s difficult

to assess the potential impact fully. However, the ability to over-

write existing EscrowCall data without any validation poses a risk of

unauthorized manipulation of contract data.

BVSS:

AO:S/AC:L/AX:L/C:N/I:C/A:N/D:L/Y:N/R:N/S:U (2.1)

Recommendation:

To address this vulnerability, it is recommended to implement a validity

check within the storeEscrowCallOrder function. This can be achieved by

adding a boolean flag or a validity status within the EscrowCall struct

to indicate whether the data is valid or has been set. Alternatively,

a separate mapping can be used to track whether an id has already been

associated with an EscrowCall.

A possible implementation is as follows:

1. Add a Validity Flag: Extend the EscrowCall struct to include a

boolean flag, such as isValid, which indicates whether the data is

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

valid or initialized.

2. Check Validity on Insertion: Modify storeEscrowCallOrder to first

check if the EscrowCall for the given id is already marked as valid.

If it is, reject the operation to prevent overwriting existing data.

3. Maintain a Separate Mapping: Alternatively, create a new mapping

(e.g., mapping(bytes32 => bool)public escrowCallExists) that tracks

whether an id has been used. Before storing a new EscrowCall, check

this mapping to ensure the id is not already in use.

By implementing these checks, the contract can prevent unauthorized over-

writing of existing data, thus preserving the integrity and intended

functionality of the EscrowGMP contract.

Remediation Plan:

SOLVED: The issue was solved as suggested on https://github.com/t3rn/

guardian/pull/178/commits/54543ff374738c3448792415a77d8ba60789c382

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/t3rn/guardian/pull/178/commits/54543ff374738c3448792415a77d8ba60789c382
https://github.com/t3rn/guardian/pull/178/commits/54543ff374738c3448792415a77d8ba60789c382

4.8 (HAL-08) REDUNDANT BALANCE
CHECK - LOW (2.5)

Description:

The ensureBalanceAndAllowance modifier in the LocalExchange contract in-

cludes a redundant balance check when dealing with native tokens (where

token == address(0)). This check, user.balance >= amount, is intended to

ensure the user (typically msg.sender) has enough native token balance

to proceed with the transaction. However, in scenarios where msg.sender

is the user and msg.value is the amount being transferred, this check is

not only unnecessary but also incorrectly implemented.

When a user sends native tokens to a contract, the amount (msg.value)

is automatically deducted from the user’s balance before the contract

code is executed. Therefore, the current check effectively requires the

user to have twice the necessary amount: once in msg.value and the same

amount still in their balance. This implementation results in a higher

and incorrect balance requirement for users.

BVSS:

AO:A/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:N/S:U (2.5)

Recommendation:

To address this issue, the ensureBalanceAndAllowance modifier should be

modified to remove the user.balance >= amount check for native token

transactions. The correct check in this context is to ensure that the

msg.value matches the amount required for the transaction, which is

already being done with require(msg.value == amount, "Mismatched deposit

execution amount of native").

The modified modifier would look like this:

33

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 2

1 modifier ensureBalanceAndAllowance(

2 address token ,

3 address user ,

4 uint256 amount

5) {

6 // Ensure the user has enough balance and allowance for the

ë token.

7 if (token == address (0)) {

8 require(msg.value == amount , "Mismatched deposit execution

ë amount of native ");

9 } else {

10 require(IERC20(token).balanceOf(user) >= amount , "

ë Insufficient user balance ");

11 require(IERC20(token).allowance(user , address(this)) >=

ë amount , "Insufficient user allowance ");

12 }

13 _;

14 }

This change ensures that the contract correctly checks the amount sent for

native token transactions without imposing an unnecessarily high balance

requirement on the user.

Remediation Plan:

SOLVED: The issue was solved as suggested on https://github.com/t3rn/

guardian/pull/178/commits/077d90b34310d79f54d7af9e7f7bfb1d1f463798

34

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/t3rn/guardian/pull/178/commits/077d90b34310d79f54d7af9e7f7bfb1d1f463798
https://github.com/t3rn/guardian/pull/178/commits/077d90b34310d79f54d7af9e7f7bfb1d1f463798

4.9 (HAL-09) PERMANENT COMMITTEE
HASH LOCK - INFORMATIONAL (1.3)

Description:

The receiveAttestationBatch function in the given contract contains a

logic flaw in handling committee updates. When batch.maybeNextCommittee

.length > 0, the function sets both currentCommitteeHash and

nextCommitteeHash to impliedNextCommitteeHash. The condition checks if

the nextCommitteeHash equals impliedNextCommitteeHash before updating,

which ensures that nextCommitteeHash is set correctly the first

time. However, subsequent calls to the function will always find

currentCommitteeHash and nextCommitteeHash to be equal, effectively

locking the committee update mechanism. This results in a scenario where

currentCommitteeHash and nextCommitteeHash will perpetually remain the

same after the first committee change, barring any future updates to the

committee.

This issue could have significant implications for the contract’s func-

tionality, particularly in systems relying on committee consensus or

periodic updates to the committee composition.

BVSS:

AO:S/AC:L/AX:L/C:N/I:C/A:C/D:L/Y:N/R:P/S:U (1.3)

Recommendation:

To resolve this issue, the contract needs a mechanism to update the

nextCommitteeHash independently of the currentCommitteeHash, along with

a validation process for any new committee proposed in the attestation

batch. The recommended changes include:

1. Separate Update Mechanisms: Implement distinct processes for up-

dating the currentCommitteeHash and nextCommitteeHash. Ensure that

35

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

nextCommitteeHash can be updated independently, allowing for future

committee transitions.

2. Committee Validation: Introduce a validation process for any new

committee hash proposed. This could involve signature verification

or other cryptographic methods to ensure the legitimacy and integrity

of the new committee.

3. Conditional Logic Adjustment: Modify the conditional logic in

receiveAttestationBatch to prevent setting both hashes to the same

value inadvertently. Ensure that the update of one does not auto-

matically lead to the update of the other unless explicitly intended

and validated.

By implementing these changes, the contract will maintain the flexibility

to transition between committees securely and as intended, ensuring the

ongoing integrity and functionality of the attestation process.

Remediation Plan:

SOLVED: The issue was solved by storing the next committee hash based

on the batch data https://github.com/t3rn/guardian/pull/178/commits/

d4d47859f34a1752e4a39e7f79bdc29ba6ec5f05

36

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/t3rn/guardian/pull/178/commits/d4d47859f34a1752e4a39e7f79bdc29ba6ec5f05
https://github.com/t3rn/guardian/pull/178/commits/d4d47859f34a1752e4a39e7f79bdc29ba6ec5f05

37

REVIEW NOTES

5.1 TRN / t3USD / t3SOL / t3DOT /
t3BTC

• Standard ERC20 token with mint functionality restricted to only

owner.

• The owner is the deployer of the contract.

5.2 EscrowGMP

• The owner is the deployer of the contract.

• assignAttesters and assignOrderer are restricted to the owner.

They enforce the callers of functions using the onlyAttesters and

onlyOrderer modifiers to the set address.

• storeRemoteOrderPayload does check for the id already set under

remotePaymentsPayloadHash. If not set, it allows storing the hash.

Otherwise, the store is skipped and false returned. It is limited

to onlyOrderer.

• commitRemoteBeneficiaryPayload will store under a given sfxId on

the remotePaymentsPayloadHash mapping a new hash of the previous

hash and the beneficiary abi encoded. Hash chaining the set hash

via storeRemoteOrderPayload and the beneficiary address. Limited to

onlyAttesters.

• The revertRemoteOrderPayload function does the same as the

commitRemoteBeneficiaryPayload function but using address(0)

instead. Limited to onlyAttesters.

• The storeEscrowCallOrder function does check for functions with a

signature of selfdestruct(address) but this doesn’t prevent from

having any function with different signature and a selfdestruct

opcode. The call is then stored under escrowCalls[id] = call;.

• claimRefund can be executed after 128 blocks have passed from the

creation of the order. If ETH tokens are used, then the reward

amount is refunded.

38

RE
VI

EW
NO

TE
S

5.3 LocalExchange

• ensureBalanceAndAllowance should not check for user.balance >=

amount as msg.value is already deducted.

• localOrder does allow creating multiple orders for the same block.

If all parameters, token, amount, rewardToken, reward are the same

the transaction will revert. You can select the corresponding

local_order_id as long as you use the same parameters. There is a

low probability risk of hash collision using a malicious rewardToken

that would lead to the same hash id.

• executeLocalOrder will fetch based on the parameters the order id

and transfer from the caller the amount and reward the caller with

the reward amount using different tokens for the order and reward.

5.4 RemoteOrder

• The owner is the deployer, and also sets the escrowGMP address.

• assignAttesters is restricted to the owner. It enforces the

onlyAttesters modifier.

• The orderMemoryData function will generate a unique and none re-

usable id per user/block. storeRemoteOrderPayload will prevent re-

usage. There is a lot of data that is not taken into consideration

and hashed.

• The remoteBridgeAsset function, does call the orderMemoryData with-

out giving the mgs.value. However, it is not required as the latter

is a public function called on the same flow.

• The bidFifo allows the first caller for a new/un-used sfxId to be

set as the orderWinners.

• claimRefund will calculate the id based on parameters and trigger

a withdrawFromVault. The withdraw happens to the sender, not the

actual creator of the order.

• The withdrawFromVault function, looks like the hashing chaining

could be manipulated as the second hash value does have type

confusion, it can be either an address or an amount. However,

the withdrawFromVault function does perform a hash of the base

39

RE
VI

EW
NO

TE
S

paymentPayloadHash (that uses amount). This means, it is not

possible to forge neither an address that matches the amount nor

an amount that matches and address.

• Both claimPayoutBatch and claimRefundBatch will make sure that if

the same rewardAssets is used, they will merge rewardAmounts.

5.5 AttestationsVerifierProofs

• During constructor, the initialCommittee and nextCommittee hash are

set using the parameters array via implyCommitteeRoot. The quorum

is stablished to be 2/3 of the initialCommittee length. However, if

the initialCommittee size is 1, quorum will be zero.

• recoverCurrentSigners will return all signers that verify a given

signature hash. It will also be checking for banned addresses on an

array.

• In the receiveSingleAttestation the hash is obtained from a user

controlled parameters. However, the signatures are verified

against that hash, which means that an attacker cannot forge custom

attestersAsLeaves that validate via multiProofVerifyCalldata the

currentCommitteeHash.

• For the receiveAttestationBatch function, even if an attacker

hand-crafted all the batch data, and the impliedNextCommitteeHash

== nextCommitteeHash check bypassed by providing a valid

maybeNextCommittee that would create the same hash as the construc-

tor. It wouldn’t be possible to give a valid attestersAsLeaves to

multiProofVerifyCalldata.

• implyCommitteeRoot does create a root hash from a list of addresses,

being the leaves of the tree. No sibling hash is passed using

multiProofProof.

40

RE
VI

EW
NO

TE
S

41

AUTOMATED TESTING

6.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance the coverage of

certain areas of the smart contracts in scope. Among the tools used was

Slither, a Solidity static analysis framework. After Halborn verified

the smart contracts in the repository and was able to compile them cor-

rectly into their abis and binary format, Slither was run against the

contracts. This tool can statically verify mathematical relationships

between Solidity variables to detect invalid or inconsistent usage of the

contracts’ APIs across the entire code-base.

The security team assessed all findings identified by the Slither soft-

ware, however, findings with severity Information and Optimization are

not included in the below results for the sake of report readability.

Results:

Slither results for t3rn - guardian

Finding Impact

RemoteOrder.withdrawFromVault(bytes32,address,uint256)

(contracts/remoteOrder.sol#179-191) sends eth to arbitrary user

Dangerous calls:

- address(msg.sender).transfer(amount)

(contracts/remoteOrder.sol#187)

High

LocalExchange.executeLocalOrder(uint256,address,address,uint256,add

ress,uint256) (contracts/localExchange.sol#68-105) uses arbitrary

from in transferFrom:

IERC20(rewardToken).safeTransferFrom(user,msg.sender,reward)

(contracts/localExchange.sol#97)

High

42

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

Reentrancy in LocalExchange.executeLocalOrder(uint256,address,addre

ss,uint256,address,uint256) (contracts/localExchange.sol#68-105):

External calls:

- IERC20(token).safeTransferFrom(msg.sender,user,amount)

(contracts/localExchange.sol#92)

- IERC20(rewardToken).safeTransferFrom(user,msg.sender,reward)

(contracts/localExchange.sol#97) External calls sending eth:

- address(user).transfer(amount) (contracts/localExchange.sol#89)

- address(msg.sender).transfer(reward)

(contracts/localExchange.sol#99) State variables written after the

call(s):

- localOrders[local_order_id] = false (contracts/localExchange.sol#

103)LocalExchange.localOrders (contracts/localExchange.sol#21) can

be used in cross function reentrancies:

- LocalExchange.claimRefund(uint256,address,uint256,address,uint256

) (contracts/localExchange.sol#107-126)

- LocalExchange.executeLocalOrder(uint256,address,address,uint256,a

ddress,uint256) (contracts/localExchange.sol#68-105)

- LocalExchange.localOrder(address,uint256,address,uint256)

(contracts/localExchange.sol#56-66)

- LocalExchange.localOrders (contracts/localExchange.sol#21)

High

RemoteOrder.withdrawFromVault(bytes32,address,uint256)

(contracts/remoteOrder.sol#179-191) sends eth to arbitrary user

Dangerous calls:

- address(msg.sender).transfer(amount)

(contracts/remoteOrder.sol#187)

High

RemoteOrder.withdrawFromVault(bytes32,address,uint256)

(contracts/remoteOrder.sol#179-191) uses a dangerous strict

equality:

- require(bool,string)(paymentHash == calculatedWithdrawHash ||

paymentHash == calculatedRefundHash,Payload for payment not

matching) (contracts/remoteOrder.sol#184)

Medium

43

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

Reentrancy in AttestationsVerifierProofs.receiveSingleAttestation(b

ytes,bytes4,uint32,bytes[],bytes32[],bool[]) (contracts/attestation

sVerifierProofs.sol#148-178):External calls:

- decodeAndProcessPayload(messageGMPPayload)

(contracts/attestationsVerifierProofs.sol#174)

- escrowGMP.commitRemoteBeneficiaryPayload(sfxId,destination)

(contracts/attestationsVerifierProofs.sol#301)

- escrowGMP.revertRemoteOrderPayload(sfxId_scope_0)

(contracts/attestationsVerifierProofs.sol#309)

- escrowGMP.commitEscrowCall(sfxId_scope_1)

(contracts/attestationsVerifierProofs.sol#320)

- escrowGMP.revertEscrowCall(sfxId_scope_1)

(contracts/attestationsVerifierProofs.sol#323) State variables

written after the call(s):

- committedGMPMessagesMap[messageHash] = true (contracts/attestatio

nsVerifierProofs.sol#176)AttestationsVerifierProofs.committedGMPMes

sagesMap (contracts/attestationsVerifierProofs.sol#66) can be used

in cross function reentrancies:

- AttestationsVerifierProofs.committedGMPMessagesMap

(contracts/attestationsVerifierProofs.sol#66)

- AttestationsVerifierProofs.isAttestationApplied(bytes32)

(contracts/attestationsVerifierProofs.sol#233-235)

- AttestationsVerifierProofs.receiveAttestationBatch(bytes,bytes,by

tes[],bytes32[],bool[])

(contracts/attestationsVerifierProofs.sol#181-230)

- AttestationsVerifierProofs.receiveSingleAttestation(bytes,bytes4,

uint32,bytes[],bytes32[],bool[])

(contracts/attestationsVerifierProofs.sol#148-178)

Medium

44

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

Reentrancy in AttestationsVerifierProofs.receiveAttestationBatch(by

tes,bytes,bytes[],bytes32[],bool[]) (contracts/attestationsVerifier

Proofs.sol#181-230):External calls:

- decodeAndProcessPayload(messageGMPPayload)

(contracts/attestationsVerifierProofs.sol#222)

- escrowGMP.commitRemoteBeneficiaryPayload(sfxId,destination)

(contracts/attestationsVerifierProofs.sol#301)

- escrowGMP.revertRemoteOrderPayload(sfxId_scope_0)

(contracts/attestationsVerifierProofs.sol#309)

- escrowGMP.commitEscrowCall(sfxId_scope_1)

(contracts/attestationsVerifierProofs.sol#320)

- escrowGMP.revertEscrowCall(sfxId_scope_1)

(contracts/attestationsVerifierProofs.sol#323) State variables

written after the call(s):

- committedGMPMessagesMap[batchMessageHash] = true (contracts/attes

tationsVerifierProofs.sol#227)AttestationsVerifierProofs.committedG

MPMessagesMap (contracts/attestationsVerifierProofs.sol#66) can be

used in cross function reentrancies:

- AttestationsVerifierProofs.committedGMPMessagesMap

(contracts/attestationsVerifierProofs.sol#66)

- AttestationsVerifierProofs.isAttestationApplied(bytes32)

(contracts/attestationsVerifierProofs.sol#233-235)

- AttestationsVerifierProofs.receiveAttestationBatch(bytes,bytes,by

tes[],bytes32[],bool[])

(contracts/attestationsVerifierProofs.sol#181-230)

- AttestationsVerifierProofs.receiveSingleAttestation(bytes,bytes4,

uint32,bytes[],bytes32[],bool[])

(contracts/attestationsVerifierProofs.sol#148-178)

- currentBatchIndex = batch.index (contracts/attestationsVerifierPr

oofs.sol#225)AttestationsVerifierProofs.currentBatchIndex

(contracts/attestationsVerifierProofs.sol#70) can be used in cross

function reentrancies:

- AttestationsVerifierProofs.constructor(address[],address[],uint25

6,EscrowGMP) (contracts/attestationsVerifierProofs.sol#92-108)

- AttestationsVerifierProofs.currentBatchIndex

(contracts/attestationsVerifierProofs.sol#70)

- AttestationsVerifierProofs.overrideCurrentBatchIndex(uint256)

(contracts/attestationsVerifierProofs.sol#118-120)

- AttestationsVerifierProofs.receiveAttestationBatch(bytes,bytes,by

tes[],bytes32[],bool[])

(contracts/attestationsVerifierProofs.sol#181-230)

- AttestationsVerifierProofs.setBatchIndex(uint256)

(contracts/attestationsVerifierProofs.sol#59-61)

Medium

45

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

AttestationsVerifierProofs.decodeAndProcessPayload(bytes)

(contracts/attestationsVerifierProofs.sol#286-331) ignores return

value by escrowGMP.revertRemoteOrderPayload(sfxId_scope_0)

(contracts/attestationsVerifierProofs.sol#309)

Medium

AttestationsVerifierProofs.decodeAndProcessPayload(bytes)

(contracts/attestationsVerifierProofs.sol#286-331) ignores return

value by escrowGMP.revertEscrowCall(sfxId_scope_1)

(contracts/attestationsVerifierProofs.sol#323)

Medium

AttestationsVerifierProofs.decodeAndProcessPayload(bytes)

(contracts/attestationsVerifierProofs.sol#286-331) ignores return

value by escrowGMP.commitEscrowCall(sfxId_scope_1)

(contracts/attestationsVerifierProofs.sol#320)

Medium

AttestationsVerifierProofs.decodeAndProcessPayload(bytes)

(contracts/attestationsVerifierProofs.sol#286-331) ignores return

value by

escrowGMP.commitRemoteBeneficiaryPayload(sfxId,destination)

(contracts/attestationsVerifierProofs.sol#301)

Medium

LocalExchange.claimRefund(uint256,address,uint256,address,uint256)

(contracts/localExchange.sol#107-126) ignores return value by

IERC20(rewardToken).approve(address(this),0)

(contracts/localExchange.sol#124)

Medium

RemoteOrder.withdrawFromVault(bytes32,address,uint256)

(contracts/remoteOrder.sol#179-191) uses a dangerous strict

equality:

- require(bool,string)(paymentHash == calculatedWithdrawHash ||

paymentHash == calculatedRefundHash,Payload for payment not

matching) (contracts/remoteOrder.sol#184)

Medium

AttestationsVerifierProofs.receiveSingleAttestation(bytes,bytes4,ui

nt32,bytes[],bytes32[],bool[]).messageHash

(contracts/attestationsVerifierProofs.sol#156) shadows:

- AttestationsVerifierProofs.messageHash(AttestationsVerifierProofs

.Batch) (contracts/attestationsVerifierProofs.sol#84-86) (function)

Low

46

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

AttestationsVerifierProofs.recoverCurrentSigners(bytes32,bytes[],ad

dress[]).leaves_scope_0

(contracts/attestationsVerifierProofs.sol#239) shadows:

- AttestationsVerifierProofs.recoverCurrentSigners(bytes32,bytes[],

address[]).leaves (contracts/attestationsVerifierProofs.sol#237)

(return variable)

Low

AttestationsVerifierProofs.recoverSigner(bytes32,bytes).messageHash

(contracts/attestationsVerifierProofs.sol#342) shadows:

- AttestationsVerifierProofs.messageHash(AttestationsVerifierProofs

.Batch) (contracts/attestationsVerifierProofs.sol#84-86) (function)

Low

EscrowGMP.assignOrderer(address) (contracts/escrowGMP.sol#43-45)

should emit an event for:

- orderer = _orderer (contracts/escrowGMP.sol#44)

Low

EscrowGMP.assignAttesters(address) (contracts/escrowGMP.sol#39-41)

should emit an event for:

- attesters = _attesters (contracts/escrowGMP.sol#40)

Low

RemoteOrder.assignAttesters(address)

(contracts/remoteOrder.sol#80-82) should emit an event for:

- attesters = _attesters (contracts/remoteOrder.sol#81)

Low

AttestationsVerifierProofs.setBatchIndex(uint256)

(contracts/attestationsVerifierProofs.sol#59-61) should emit an

event for:

- currentBatchIndex = _batchIndex

(contracts/attestationsVerifierProofs.sol#60)

Low

AttestationsVerifierProofs.overrideCurrentBatchIndex(uint256)

(contracts/attestationsVerifierProofs.sol#118-120) should emit an

event for:

- currentBatchIndex = newBatchIndex

(contracts/attestationsVerifierProofs.sol#119)

Low

AttestationsVerifierProofs.updateCommitteeSize(uint256)

(contracts/attestationsVerifierProofs.sol#141-145) should emit an

event for:

- quorum = (committeeSize * 2) / 3

(contracts/attestationsVerifierProofs.sol#144)

Low

EscrowGMP.assignAttesters(address)._attesters

(contracts/escrowGMP.sol#39) lacks a zero-check on :

- attesters = _attesters (contracts/escrowGMP.sol#40)

Low

47

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

RemoteOrder.withdrawFromVaultSkipGMPChecks(address,uint256,address)

.beneficiary (contracts/remoteOrder.sol#193) lacks a zero-check on :

- address(beneficiary).transfer(amount)

(contracts/remoteOrder.sol#195)

Low

RemoteOrder.assignAttesters(address)._attesters

(contracts/remoteOrder.sol#80) lacks a zero-check on :

- attesters = _attesters (contracts/remoteOrder.sol#81)

Low

EscrowGMP.assignOrderer(address)._orderer

(contracts/escrowGMP.sol#43) lacks a zero-check on :

- orderer = _orderer (contracts/escrowGMP.sol#44)

Low

RemoteOrder.withdrawFromVault(bytes32,address,uint256)

(contracts/remoteOrder.sol#179-191) has external calls inside a

loop: address(msg.sender).transfer(amount)

(contracts/remoteOrder.sol#187)

Low

RemoteOrder.withdrawFromVault(bytes32,address,uint256)

(contracts/remoteOrder.sol#179-191) has external calls inside a

loop: escrowGMP.nullifyPayloadHash(sfxId)

(contracts/remoteOrder.sol#185)

Low

RemoteOrder.withdrawFromVault(bytes32,address,uint256)

(contracts/remoteOrder.sol#179-191) has external calls inside a

loop: paymentHash = escrowGMP.getRemotePaymentPayloadHash(sfxId)

(contracts/remoteOrder.sol#183)

Low

Address.functionCallWithValue(address,bytes,uint256,string) (node_m

odules/@openzeppelin/contracts/utils/Address.sol#128-137) has

external calls inside a loop: (success,returndata) =

target.call{value: value}(data) (node_modules/@openzeppelin/contrac

ts/utils/Address.sol#135)

Low

Reentrancy in RemoteOrder.orderMemoryData(bytes)

(contracts/remoteOrder.sol#97-114): External calls:

- IERC20(rewardAsset).safeTransferFrom(msg.sender,address(this),max

Reward) (contracts/remoteOrder.sol#109)

- require(bool,string)(escrowGMP.storeRemoteOrderPayload(id,keccak2

56(bytes)(abi.encode(rewardAsset,maxReward))),Payload already

stored) (contracts/remoteOrder.sol#111) Event emitted after the

call(s):

- RemoteOrderCreated(id,nonce,msg.sender,input)

(contracts/remoteOrder.sol#113)

Low

48

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

Reentrancy in AttestationsVerifierProofs.receiveSingleAttestation(b

ytes,bytes4,uint32,bytes[],bytes32[],bool[]) (contracts/attestation

sVerifierProofs.sol#148-178):External calls:

- decodeAndProcessPayload(messageGMPPayload)

(contracts/attestationsVerifierProofs.sol#174)

- escrowGMP.commitRemoteBeneficiaryPayload(sfxId,destination)

(contracts/attestationsVerifierProofs.sol#301)

- escrowGMP.revertRemoteOrderPayload(sfxId_scope_0)

(contracts/attestationsVerifierProofs.sol#309)

- escrowGMP.commitEscrowCall(sfxId_scope_1)

(contracts/attestationsVerifierProofs.sol#320)

- escrowGMP.revertEscrowCall(sfxId_scope_1)

(contracts/attestationsVerifierProofs.sol#323) Event emitted after

the call(s):

- CommitmentApplied(messageHash,msg.sender)

(contracts/attestationsVerifierProofs.sol#177)

Low

Reentrancy in RemoteOrder.order(bytes4,uint32,bytes32,uint256,addre

ss,uint256,uint256) (contracts/remoteOrder.sol#134-140): External

calls:

- orderMemoryData(input) (contracts/remoteOrder.sol#137)

- returndata = address(token).functionCall(data,SafeERC20:

low-level call failed) (node_modules/@openzeppelin/contracts/token/

ERC20/utils/SafeERC20.sol#122)- (success,returndata) =

target.call{value: value}(data) (node_modules/@openzeppelin/contrac

ts/utils/Address.sol#135)- IERC20(rewardAsset).safeTransferFrom(msg

.sender,address(this),maxReward) (contracts/remoteOrder.sol#109)

- require(bool,string)(escrowGMP.storeRemoteOrderPayload(id,keccak2

56(bytes)(abi.encode(rewardAsset,maxReward))),Payload already

stored) (contracts/remoteOrder.sol#111) External calls sending eth:

- orderMemoryData(input) (contracts/remoteOrder.sol#137)

- (success,returndata) = target.call{value: value}(data) (node_modu

les/@openzeppelin/contracts/utils/Address.sol#135)Event emitted

after the call(s):

- OrderCreated(generateId(msg.sender,uint32(block.number)),destinat

ion,asset,targetAccount,amount,rewardAsset,insurance,maxReward,uint

32(block.number)) (contracts/remoteOrder.sol#139)

Low

49

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

Reentrancy in

AttestationsVerifierProofs.decodeAndProcessPayload(bytes) (contract

s/attestationsVerifierProofs.sol#286-331):External calls:

- escrowGMP.commitRemoteBeneficiaryPayload(sfxId,destination)

(contracts/attestationsVerifierProofs.sol#301)

- escrowGMP.revertRemoteOrderPayload(sfxId_scope_0)

(contracts/attestationsVerifierProofs.sol#309)

- escrowGMP.commitEscrowCall(sfxId_scope_1)

(contracts/attestationsVerifierProofs.sol#320)

- escrowGMP.revertEscrowCall(sfxId_scope_1)

(contracts/attestationsVerifierProofs.sol#323) Event emitted after

the call(s):

- CallCommitApplied(sfxId_scope_1)

(contracts/attestationsVerifierProofs.sol#321)

- CallRevertApplied(sfxId_scope_1)

(contracts/attestationsVerifierProofs.sol#324)

- TransferCommitApplied(sfxId,destination)

(contracts/attestationsVerifierProofs.sol#303)

- TransferRevertApplied(sfxId_scope_0)

(contracts/attestationsVerifierProofs.sol#311)

Low

Reentrancy in AttestationsVerifierProofs.receiveAttestationBatch(by

tes,bytes,bytes[],bytes32[],bool[]) (contracts/attestationsVerifier

Proofs.sol#181-230):External calls:

- decodeAndProcessPayload(messageGMPPayload)

(contracts/attestationsVerifierProofs.sol#222)

- escrowGMP.commitRemoteBeneficiaryPayload(sfxId,destination)

(contracts/attestationsVerifierProofs.sol#301)

- escrowGMP.revertRemoteOrderPayload(sfxId_scope_0)

(contracts/attestationsVerifierProofs.sol#309)

- escrowGMP.commitEscrowCall(sfxId_scope_1)

(contracts/attestationsVerifierProofs.sol#320)

- escrowGMP.revertEscrowCall(sfxId_scope_1)

(contracts/attestationsVerifierProofs.sol#323) Event emitted after

the call(s):

- BatchApplied(batchMessageHash,msg.sender)

(contracts/attestationsVerifierProofs.sol#229)

Low

50

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

TRN.constructor(string,string).name (contracts/TRNToken.sol#11)

shadows:

- ERC20.name() (node_modules/@openzeppelin/contracts/token/ERC20/ER

C20.sol#62-64) (function)

- IERC20Metadata.name() (node_modules/@openzeppelin/contracts/token

/ERC20/extensions/IERC20Metadata.sol#17) (function)

Low

TRN.constructor(string,string).symbol (contracts/TRNToken.sol#11)

shadows:

- ERC20.symbol() (node_modules/@openzeppelin/contracts/token/ERC20/

ERC20.sol#70-72) (function)

- IERC20Metadata.symbol() (node_modules/@openzeppelin/contracts/tok

en/ERC20/extensions/IERC20Metadata.sol#22) (function)

Low

LocalExchange.claimRefund(uint256,address,uint256,address,uint256).

user (contracts/localExchange.sol#108) lacks a zero-check on :

- address(user).transfer(reward) (contracts/localExchange.sol#121)

Low

Reentrancy in LocalExchange.executeLocalOrder(uint256,address,addre

ss,uint256,address,uint256) (contracts/localExchange.sol#68-105):

External calls:

- IERC20(token).safeTransferFrom(msg.sender,user,amount)

(contracts/localExchange.sol#92)

- IERC20(rewardToken).safeTransferFrom(user,msg.sender,reward)

(contracts/localExchange.sol#97) External calls sending eth:

- address(user).transfer(amount) (contracts/localExchange.sol#89)

- address(msg.sender).transfer(reward)

(contracts/localExchange.sol#99) Event emitted after the call(s):

- OrderExecuted(user,msg.sender,token,amount)

(contracts/localExchange.sol#104)

Low

t3USD.constructor(string,string).name (contracts/t3USD.sol#11)

shadows:

- ERC20.name() (node_modules/@openzeppelin/contracts/token/ERC20/ER

C20.sol#62-64) (function)

- IERC20Metadata.name() (node_modules/@openzeppelin/contracts/token

/ERC20/extensions/IERC20Metadata.sol#17) (function)

Low

51

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

t3USD.constructor(string,string).symbol (contracts/t3USD.sol#11)

shadows:

- ERC20.symbol() (node_modules/@openzeppelin/contracts/token/ERC20/

ERC20.sol#70-72) (function)

- IERC20Metadata.symbol() (node_modules/@openzeppelin/contracts/tok

en/ERC20/extensions/IERC20Metadata.sol#22) (function)

Low

t3DOT.constructor(string,string).symbol

(contracts/t3DotToken.sol#11) shadows:

- ERC20.symbol() (node_modules/@openzeppelin/contracts/token/ERC20/

ERC20.sol#70-72) (function)

- IERC20Metadata.symbol() (node_modules/@openzeppelin/contracts/tok

en/ERC20/extensions/IERC20Metadata.sol#22) (function)

Low

t3DOT.constructor(string,string).name (contracts/t3DotToken.sol#11)

shadows:

- ERC20.name() (node_modules/@openzeppelin/contracts/token/ERC20/ER

C20.sol#62-64) (function)

- IERC20Metadata.name() (node_modules/@openzeppelin/contracts/token

/ERC20/extensions/IERC20Metadata.sol#17) (function)

Low

ERC20Mock.constructor(string,string).symbol

(contracts/ERC20Mock.sol#9) shadows:

- ERC20.symbol() (node_modules/@openzeppelin/contracts/token/ERC20/

ERC20.sol#70-72) (function)

- IERC20Metadata.symbol() (node_modules/@openzeppelin/contracts/tok

en/ERC20/extensions/IERC20Metadata.sol#22) (function)

Low

ERC20Mock.constructor(string,string).name

(contracts/ERC20Mock.sol#9) shadows:

- ERC20.name() (node_modules/@openzeppelin/contracts/token/ERC20/ER

C20.sol#62-64) (function)

- IERC20Metadata.name() (node_modules/@openzeppelin/contracts/token

/ERC20/extensions/IERC20Metadata.sol#17) (function)

Low

EscrowGMP.assignOrderer(address) (contracts/escrowGMP.sol#43-45)

should emit an event for:

- orderer = _orderer (contracts/escrowGMP.sol#44)

Low

EscrowGMP.assignAttesters(address) (contracts/escrowGMP.sol#39-41)

should emit an event for:

- attesters = _attesters (contracts/escrowGMP.sol#40)

Low

52

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

EscrowGMP.assignAttesters(address)._attesters

(contracts/escrowGMP.sol#39) lacks a zero-check on :

- attesters = _attesters (contracts/escrowGMP.sol#40)

Low

EscrowGMP.assignOrderer(address)._orderer

(contracts/escrowGMP.sol#43) lacks a zero-check on :

- orderer = _orderer (contracts/escrowGMP.sol#44)

Low

t3SOL.constructor(string,string).symbol

(contracts/t3SOLToken.sol#11) shadows:

- ERC20.symbol() (node_modules/@openzeppelin/contracts/token/ERC20/

ERC20.sol#70-72) (function)

- IERC20Metadata.symbol() (node_modules/@openzeppelin/contracts/tok

en/ERC20/extensions/IERC20Metadata.sol#22) (function)

Low

t3SOL.constructor(string,string).name (contracts/t3SOLToken.sol#11)

shadows:

- ERC20.name() (node_modules/@openzeppelin/contracts/token/ERC20/ER

C20.sol#62-64) (function)

- IERC20Metadata.name() (node_modules/@openzeppelin/contracts/token

/ERC20/extensions/IERC20Metadata.sol#17) (function)

Low

EscrowGMP.assignOrderer(address) (contracts/escrowGMP.sol#43-45)

should emit an event for:

- orderer = _orderer (contracts/escrowGMP.sol#44)

Low

EscrowGMP.assignAttesters(address) (contracts/escrowGMP.sol#39-41)

should emit an event for:

- attesters = _attesters (contracts/escrowGMP.sol#40)

Low

RemoteOrder.assignAttesters(address)

(contracts/remoteOrder.sol#80-82) should emit an event for:

- attesters = _attesters (contracts/remoteOrder.sol#81)

Low

EscrowGMP.assignAttesters(address)._attesters

(contracts/escrowGMP.sol#39) lacks a zero-check on :

- attesters = _attesters (contracts/escrowGMP.sol#40)

Low

RemoteOrder.withdrawFromVaultSkipGMPChecks(address,uint256,address)

.beneficiary (contracts/remoteOrder.sol#193) lacks a zero-check on :

- address(beneficiary).transfer(amount)

(contracts/remoteOrder.sol#195)

Low

RemoteOrder.assignAttesters(address)._attesters

(contracts/remoteOrder.sol#80) lacks a zero-check on :

- attesters = _attesters (contracts/remoteOrder.sol#81)

Low

53

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

EscrowGMP.assignOrderer(address)._orderer

(contracts/escrowGMP.sol#43) lacks a zero-check on :

- orderer = _orderer (contracts/escrowGMP.sol#44)

Low

RemoteOrder.withdrawFromVault(bytes32,address,uint256)

(contracts/remoteOrder.sol#179-191) has external calls inside a

loop: address(msg.sender).transfer(amount)

(contracts/remoteOrder.sol#187)

Low

RemoteOrder.withdrawFromVault(bytes32,address,uint256)

(contracts/remoteOrder.sol#179-191) has external calls inside a

loop: escrowGMP.nullifyPayloadHash(sfxId)

(contracts/remoteOrder.sol#185)

Low

RemoteOrder.withdrawFromVault(bytes32,address,uint256)

(contracts/remoteOrder.sol#179-191) has external calls inside a

loop: paymentHash = escrowGMP.getRemotePaymentPayloadHash(sfxId)

(contracts/remoteOrder.sol#183)

Low

Address.functionCallWithValue(address,bytes,uint256,string) (node_m

odules/@openzeppelin/contracts/utils/Address.sol#128-137) has

external calls inside a loop: (success,returndata) =

target.call{value: value}(data) (node_modules/@openzeppelin/contrac

ts/utils/Address.sol#135)

Low

Reentrancy in RemoteOrder.orderMemoryData(bytes)

(contracts/remoteOrder.sol#97-114): External calls:

- IERC20(rewardAsset).safeTransferFrom(msg.sender,address(this),max

Reward) (contracts/remoteOrder.sol#109)

- require(bool,string)(escrowGMP.storeRemoteOrderPayload(id,keccak2

56(bytes)(abi.encode(rewardAsset,maxReward))),Payload already

stored) (contracts/remoteOrder.sol#111) Event emitted after the

call(s):

- RemoteOrderCreated(id,nonce,msg.sender,input)

(contracts/remoteOrder.sol#113)

Low

54

AU
TO

MA
TE

D
TE

ST
IN

G

Finding Impact

Reentrancy in RemoteOrder.order(bytes4,uint32,bytes32,uint256,addre

ss,uint256,uint256) (contracts/remoteOrder.sol#134-140): External

calls:

- orderMemoryData(input) (contracts/remoteOrder.sol#137)

- returndata = address(token).functionCall(data,SafeERC20:

low-level call failed) (node_modules/@openzeppelin/contracts/token/

ERC20/utils/SafeERC20.sol#122)- (success,returndata) =

target.call{value: value}(data) (node_modules/@openzeppelin/contrac

ts/utils/Address.sol#135)- IERC20(rewardAsset).safeTransferFrom(msg

.sender,address(this),maxReward) (contracts/remoteOrder.sol#109)

- require(bool,string)(escrowGMP.storeRemoteOrderPayload(id,keccak2

56(bytes)(abi.encode(rewardAsset,maxReward))),Payload already

stored) (contracts/remoteOrder.sol#111) External calls sending eth:

- orderMemoryData(input) (contracts/remoteOrder.sol#137)

- (success,returndata) = target.call{value: value}(data) (node_modu

les/@openzeppelin/contracts/utils/Address.sol#135)Event emitted

after the call(s):

- OrderCreated(generateId(msg.sender,uint32(block.number)),destinat

ion,asset,targetAccount,amount,rewardAsset,insurance,maxReward,uint

32(block.number)) (contracts/remoteOrder.sol#139)

Low

t3BTC.constructor(string,string).name (contracts/t3BTCToken.sol#11)

shadows:

- ERC20.name() (node_modules/@openzeppelin/contracts/token/ERC20/ER

C20.sol#62-64) (function)

- IERC20Metadata.name() (node_modules/@openzeppelin/contracts/token

/ERC20/extensions/IERC20Metadata.sol#17) (function)

Low

t3BTC.constructor(string,string).symbol

(contracts/t3BTCToken.sol#11) shadows:

- ERC20.symbol() (node_modules/@openzeppelin/contracts/token/ERC20/

ERC20.sol#70-72) (function)

- IERC20Metadata.symbol() (node_modules/@openzeppelin/contracts/tok

en/ERC20/extensions/IERC20Metadata.sol#22) (function)

Low

End of table for t3rn - guardian

Results summary:

The findings obtained as a result of the Slither scan were reviewed. The majority

of Slither findings were determined false-positives.

55

AU
TO

MA
TE

D
TE

ST
IN

G

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	ASSESSMENT SUMMARY
	TEST APPROACH & METHODOLOGY

	RISK METHODOLOGY
	EXPLOITABILITY
	IMPACT
	SEVERITY COEFFICIENT
	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	REVIEW NOTES
	TRN / t3USD / t3SOL / t3DOT / t3BTC
	EscrowGMP
	LocalExchange
	RemoteOrder
	AttestationsVerifierProofs

	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Results
	Results summary

